

Objective of this practice

- 1 Determine the **extent** of flooded areas
- 2 SAR satellite imagery constitutes a viable solution to process images **quickly** determine the flooded areas
- **3** Near real-time flooding information to relief agencies
- 4 Flood extent information can be used for damage assessment
- 5 Risk management
- 6 Creating **scenarios** showing potential population, economic activities and the environment at potential risk from flooding
- 7 No cost

UNITED NATIONS Office for Outer Space Affairs Sentinel Synthetic Aperture Radar (SAR)

Information on Sentinel mission

Mission Orbit:

Orbit Type: Sun-synchronous, near-polar, circular

Orbit Height: 693 km

Inclination: 98.18°

Repeat Cycle: 175 orbits in 12 days

Payload:

C-SAR (C-band Synthetic Aperture Radar)

Resolution and Swath Width (Four modes):

- Strip Map Mode: 80 km Swath, 5 x 5 m spatial resolution
- Interferometric Wide Swath: 250 km Swath, 5x20 m spatial resolution
- Extra-Wide Swath Mode: 400 km Swath, 25 x 100 m spatial resolution
- Wave-Mode: 20 km x 20 km, 5 x 20 m spatial resolution

TABLE 1. COMMONLY USED FREQUENCY BANDS FOR SAR SYSTEMS AND THE CORRESPONDING FREQUENCY AND WAVELENGTH RANGES. APPLICATION EXAMPLES ARE: 1) FOLIAGE PENETRATION, SUBSURFACE IMAGING AND BIOMASS ESTIMATION IN P- AND L-BAND; 2) AGRICULTURE, OCEAN, ICE OR SUBSIDENCE MONITORING IN L-, C-, S- AND X-BAND; 3) SNOW MONITORING IN X- AND KU-BAND; AND 4) VERY HIGH-RESOLUTION IMAGING IN X- AND KA-BAND. MOST USED FREQUENCY BANDS ARE L-, C- AND X-BAND.

Frequency Band	Ka	Ku	X	С	S	L	P
Frequency [GHz]	40-25	17.6-12	12-7.5	7.5-3.75	3.75-2	2–1	0.5-0.25
Wavelength [cm]	0.75-1.2	1.7-2.5	2.5-4	4-8	8-15	15-30	60-120

Mode	Incidence Angle	Resolution	Swath Width	Polarization (H = Horizontal V = Vertical)
Stripmap	20 - 45	5 x 5 m	80 km	HH+HV, VH+VV, HH, VV
Interferometric Wide swath	29 - 46	5 x 20 m	250 km	HH+HV, VH+VV, HH, VV
Extra Wide swath	19 - 47	20 x 40 m	400 km	HH+HV, VH+VV, HH, VV
Wave	22 - 35 35 - 38	5 x 5 m	20 x 20 km	HH, VV

Flood Mapping around Vembanadu Lake Karala

Flooded Area 21 Aug 2018

Flooded Area 7 Dec 2018

Radar Polarisation

Strengths of SAR

Cloud independent images.

High re-visit time

Easy detection of smooth water. Accuracy: up to 95%

Limitation of SAR

Potential false alarm from shadows smooth objects e.g. roads & sand

Difficult detection floods in urban areas

Difficulties in detecting flooded vegetation

Methodology and software

The practice shows the use of **ESA's SNAP software** for pre-processing and processing of SAR imagery

Threshold method for deriving the flood extent

to visualize the results of image processing

Space Research Institute NASU-SSAU, Ukraine.

Data Access

The Sentinels Scientific Data Hub *free,* but requires *registration*

download

Specify data; product type, sensor mode, sensing period; using web preview draw extent of interest/region

Steps to follow

Data preparation

- Read ZIP sentinel-1 data from the directory
- View product explorer for
 - i. Metadata (orbit and image);
 - ii. Tie-points grid (interpolated latitude, longitude, incident angle and slant range time values);
 - iii. Bands (actual image bands)
 - iv. By right clicking on the Product, Properties can be opened which include information on mission, acquisition date, pass, etc. Double click

Image display

- Click on bands to display bands to
- a. Amplitude
- b. Intensity
- Double click on amplitude or Intensity to display image
- To subset, select on Menu panel 'Raster' --> 'Subset'. Specify region of interest and click OK button.

Calibration

Menu panel ==>

'Radar' --> 'Radiometric' --> 'Calibrate'

A new product with calibrated values of the backscatter coefficient

Speckle Filtering

Menu panel ==> 'Radar' -> 'Speckle Filtering' -> 'Single Product Speckle Filter'

A new filtered band will be created

Binarization

To separate water from non-water a threshold can be selected select 'Colour Manipulation tab'-> view histogram

low values= water & high values=non-water

To Binarize:

Menu panel =>'Raster' --> 'Band Math'

https://scihub.copernicus.eu/dhus/#/self-registration

Geometric Correction

Re-project the image to a geographic projection

Radar --> Geometric --> Terrain Correction --> Range-Doppler Terrain Correction

Visualization

Menu panel==>

File --> Export --> Other --> View as Google Earth KMZ.

The KMZ file will be directly imported to Google Earth

To display solely the water pixels

unzip the KMZ file from SNAP; the resulting folder will include an overlay.kml file and an overlay.png

Mission Objectives:

- Land monitoring of forests, water, soil and agriculture
- Emergency mapping support in the event of natural disasters
- Marine monitoring of the maritime environment
- Sea ice observations and iceberg monitoring
- Production of high resolution ice charts
- Forecasting ice conditions at sea
- Mapping oil spills
- Sea vessel detection
- Climate change monitoring

Bibliography:

Kussul N., Shelestov A., Skakun S. "Flood Monitoring on the Basis of <u>SAR Data</u>", In: F. Kogan, A. Powell, O. Fedorov (Eds.) "Use of <u>Satellite</u> and In-Situ Data to Improve Sustainability". NATO Science for Peace and Security Series C: Environmental Security, 2011, pp. 19-29. (http://dx.doi.org/10.1007/978-90-481-9618-0 3)

Kussul N., Shelestov A., Skakun S. (2008) "**Grid System for Flood Extent Extraction from Satellite Images**", Earth Science Informatics, 1(3-4), pp. 105-117. (http://dx.doi.org/10.1007/s12145-008-0014-3)

