Vulnerability Assessment – Rapid Visual Screening

Major (Dr) C S Sanghvi
Professor
APPLIED MECHANICS DEPARTMENT
L D COLLEGE OF ENGINEERING
AHMEDABAD – 380 015

LEVELS OF EVALUATION

LEVEL-1

Rapid Visual Screening (RVS)

LEVEL-2

Simplified Vulnerability Assessment (SVA)

LEVEL-3

Detailed Vulnerability Assessment (DVA)

Rapid Visual Screening (RVS) Procedure

- For mass scale screening of existing buildings
- Limited to visual inspection and identification of potential seismic defects/deficiencies
- Use of checklists
- For post-earthquake vulnerability survey

Simplified Vulnerability Assessment (SVA) Procedure

- For buildings identified during Rapid Visual Screening
- More detailed visual survey, preliminary measurements and study of available design documents, drawings and repair documents, if any.
- Simplified calculation for forces in members

Detailed Vulnerability Assessment (DVA) Procedure

- For vulnerability of assessment of individual buildings
- Detailed in-situ investigation of material strength, defects and deterioration
- Detailed analysis

SOURCES OF DEFICIENCIES

Defects in the original design

- 1. Under estimation of loads
- 2. Old standards
- 3. Improper detailing

SOURCES OF DEFICIENCIES

Defects during construction

- 1. Under strength concrete
- 2. Poor compaction
- 3. Poor construction joints
- 4. Improper placing of reinforcement
- 5. Honey-combing

SOURCES OF DEFICIENCIES

Deterioration due to improper maintenance

- 1. Reinforcement corrosion
- 2. Alkali-aggregate reaction

VISUAL INSPECTION AND STUDY OF BUILDING CONFIGURATION

- 1. Asymmetry of configuration
- 2. Irregularity in stiffness
- 3. Location of shear wall, stair case, service core
- 4. Location and condition of separation joints
- 5. Distress shown by structure, e.g cracks, spalling
- 6. Year of construction and IS Codes followed
- 7. Seismic zone
- 8. Extension and past repairs

SOFT FIRST STOREY

DAMAGE TO SOFT FIRST STOREY BUILDING DURING EARTHQUAKE

DISSIMILAR ADJACENT BUILDING

HEAVY MASS AT TOP

STIFFNESS AND PLAN IRREGULARITY

BEAM COLUMN OFFSET

NON-FUNCTIONAL SEPARATION JOINT

MONOLITHIC STAIRCASE

SHORT COLUMN EFFECT

STUDY OF DRAWINGS

- 1. Symmetry and grid pattern
- 2. Ductile detailing and confining reinforcement
- 3. Anchorage of beam reinforcement into column
- 4. Splicing of reinforcement
- 5. Anchorage of shear wall reinforcement in to beam, slab and column
- 6. Confining reinforcement in shear walls

LACK OF SHEAR REINFORCEMENT

LACK OF CONFINING

LACK OF ANCHORAGE

IMPROPER SPLICING

IN-SITU EVALUATION TOOLS

REBOUND HAMMER

SURFACE HARDNESS TEST

IN-SITU EVALUATION TOOLS

USPV TESTER

PENETRATION RESISTANCE TEST

PENETRATION RESISTANCE TEST

PULL OUT TEST

PULL OUT TEST

IN-SITU EVALUATION TOOLS

PULL-OUT TEST

PULL-OFF TEST

PULL-OFF TEST

Thank You