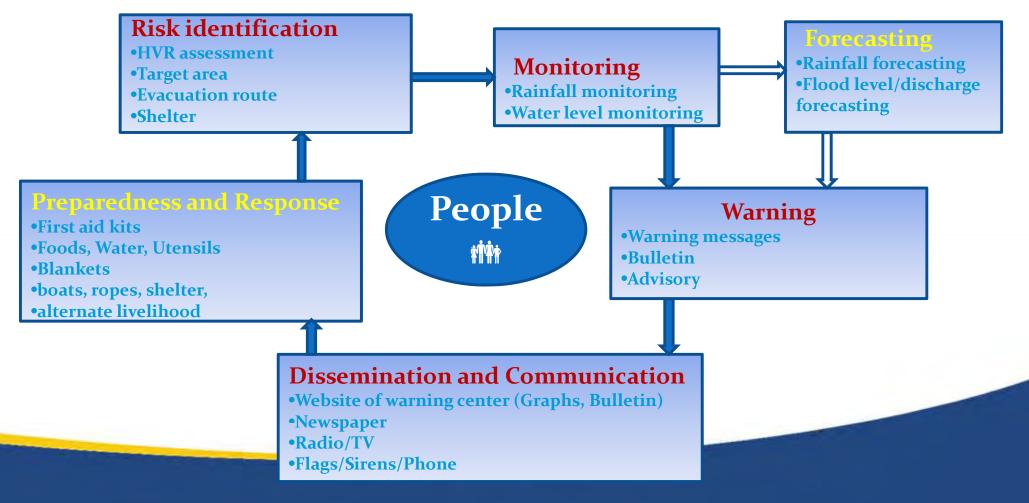


Short Range Regional Early Warning System SDMC, Gandhinagar, India 23 June, 2017

Dr. Anshul Agarwal Hydrologist Regional Integrated Multi-Hazard Early Warning Systems, Bangkok, Thailand

Outline

- Elements of FEWS
- Risk Identification
- Observation network
- Forecasting system
- Training and capacity building
- Case Study



Components

- Enhancing meteorological and hydrological monitoring capacities
- Development of flood forecasting systems
- Development of Decision Support System (DSS) to communicate relevant, long-lead, location-specific flood risk information
- Training and Capacity Building

Elements of FFEWS

RISK IDENTIFICATION

Risk Identification

- Participatory approach
- Historical flood depth, extent, duration assessed from community consultation
- HVR map developed on the basis of historical data analysis and field survey
- Local threshold values for warning assessed
- Evacuation route and shelter identified

Project Initiation

Involving various stakeholders to identify the target areas and locations for forecasting

Progress meetings involving various beneficiaries

To discuss the model setup and verifying the inclusion of all important locations

Risk Identification

Participating Agencies: (Myanmar flood project)

- Department of Meteorology and Hydrology (DMH)
- Department of Water Resources (DoWR)
- Irrigation Department (ID)
- Ministry of Energy and Power (MoEP)
- Ministry of Construction (MoC)

ENHANCING THE OBSERVATION NETWORK

Real Time Monitoring System

Real Time Data Transmission System

Satellite

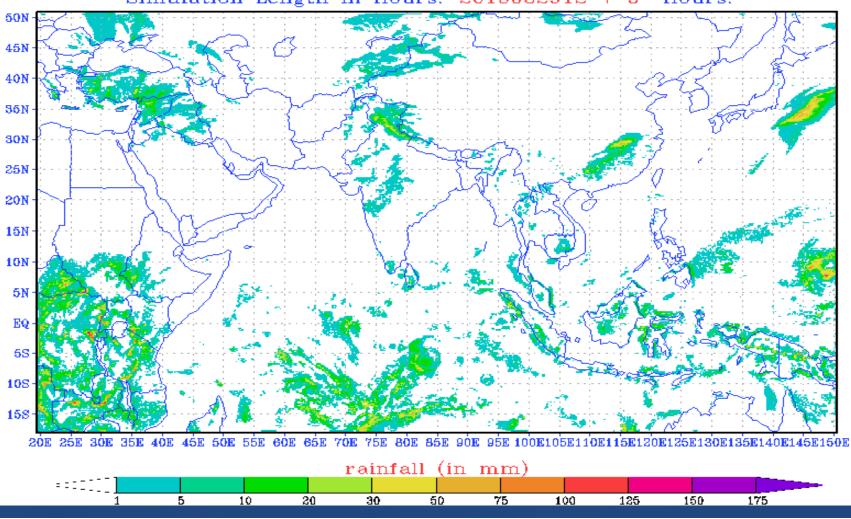
Real Time Monitoring System

Home Real Time Data Mar				Flood Forecasting Project
Construction Construction and Construction	nually O	bserved Da	ata Curre	ent Forecast Community Outreach Projects Publications River Watch Rainfall Watch
T-Mahakali	West F	Rapti At Kus	sum (375) : 1	Naterlevel
E-Karnali				Real Time Data
Babai				The current reading is 8.28 m on date 2014-08-15 09:00:00
🕀 West Rapti				
l⊒ Bagmati				Water Level is falling and Higher Than Danger Level
Koshi				Danger Level is 5.40 m And Warning Level is 5.00 m
🗄 Kankai				
Flood Alerts				Choose Your Option
Water Level of Karnali at Chisapani at 2014-08-15 02:00:00 is rising [10.09 m] and Higher Than Warning Level			Select Date	2014-08-14 View Type Hourly View
Water Level of Babai River at Chepang at 2014-08-15 04:15:00 is	Hour	Value	Flow	Hourly Data Summary at August 14, 2014
steady [5.15 m] and Below		(m)	(m ³ /s)	8 m
Warning Level	1	2.65	135.50	
Water Level of Rapti River at - Kusum at 2014-08-15 09:00:00 is	2	2.73	154.80	
falling [8.28 m] and Higher Than Danger Level	3	3.35	364.50	
Water Level of Narayani River at	4	3.53	445.70	5 m
Devghat at 2014-08-15 09:00:00 is	5	3.62	490.40	
rising [7.90 m] and Higher Than Warning Level	6	3.89	640.20	Materiavel Materiavel
Water Level of East Rapti at Rajaiya	7	3.87	628.60	by 4m
at 2014-08-15 09:00:00 is falling	8	3.79	582.40	Ma Antonio Anto
[1.85 m] and Below Warning Level	9	3.66	511.20	
Water Level of Bagmati River at Karmaiya at 2014-08-15 09:10:00 is	10	3.45	408.50	E 2 m
N/A [N/A m] and N/A	11	3.49	426.50	
Water Level of Koshi River at	12	3.39	381.70	
Chatara at 2014-08-15 08:55:00 is rising [5.92 m] and Higher Than	13	3.47	417.50	0 m 1 7 7 4 5 6 7 8 0 10 11 12 12 14 15 16 17 18 10 20 21 20 22 24
Warning Level	14	3.75	560.00	1 2 3 4 3 6 7 8 9 10 11 12 13 14 13 16 17 18 19 20 21 22 23 24
	15	3.74	554.40	Hour
Water Level of Kankai River at Mainachuli at 2013-01-04 14:56:46				Hydrology.gov.np:

FORECAST SYSTEM

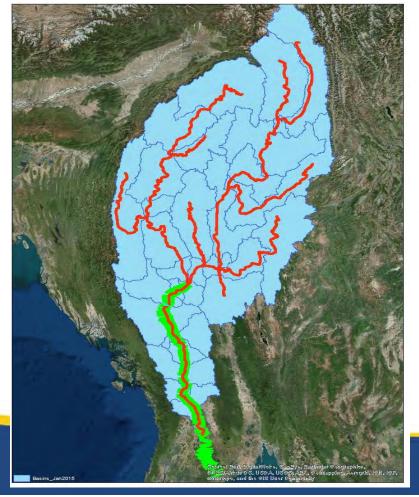
Elements of Forecasting System

- Numerical Weather Prediction (NWP) system
- Data preprocessing system
- Hydrological modeling system
- Hydraulic modeling system
- Error correction system

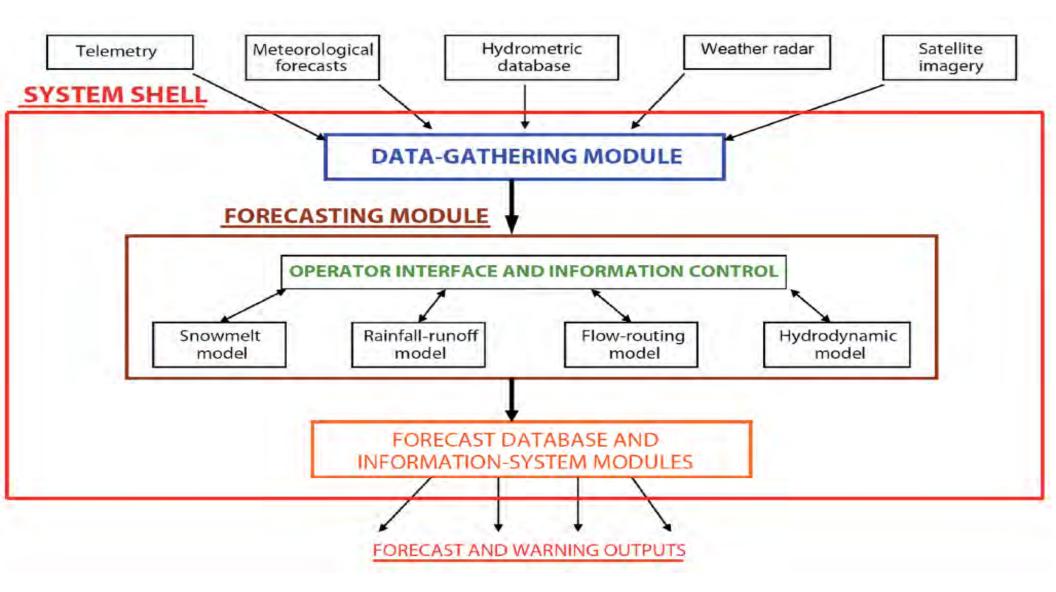

Numerical Weather Prediction

- Processed and basin specific WRF 3 days/ECMWF 15-days rainfall forecast is employed to generate flood/flow forecast
- Various steps involved in forecast processing are:
 - Filling gaps in observation data
 - Generating basin average observations
 - Generating basin average forecast for baseline period
 - Forecast verification against the observations
 - Applying bias correction scheme in forecast used in hydrological models

Numerical Weather Prediction


Six Hourly Accumulated RainFall (in mm) Simulation Length in Hours: 2015032912 + 6 Hours.

RIMES


Model Development

Hydrological and Hydraulic model integrated with Decision Support System

Data and Model Integration System

TRAINING AND CAPACITY BUILDING

Training and Capacity Building

Training and capacity building at local and national level on

- Capacity to generate flood forecasts
- interpretation of flood forecasts and associated uncertainties
- local dissemination
- preparedness and immediate response

RIMES

Training and Capacity Building

- Training on telemetry system installation, operation and maintenance for local NMHSs staff
- Secondment training on WRF/ECMWF model validation to meteorologist for a designated period
- Secondment training on hydrological modeling and DSS to hydrologists
- Training at NMHSs office premises during the transfer of systems
- Continuous backup support

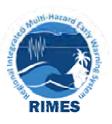
Community Preparedness and Response

- Build the capacity of a community to respond to the consequences of floods by having plans in place in advance so that people know what to do and where to go if a warning is issued.
- Community based organizations are strengthened to take immediate response
- Provision of multi-purpose shelters
- Periodic drills/simulation

Improving coping capacity

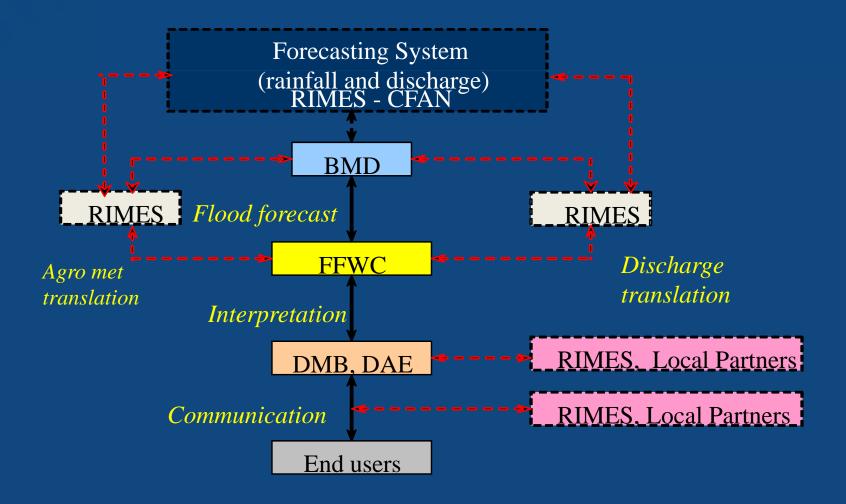
Local Preparedness

- prepare evacuation and response plans by identifying high grounds with adequate sanitation and communication
- plan to store dry food and safe drinking water
- plan to mobilise resources for relief and recovery activities
- prepare work plan for relief and rehabilitation activities
- plan for alternative livelihood options (e.g. small scale fishing, boat making)



Community Response

- evacuate people and livestock from the flood prone areas during flooding
- secure cattle, poultry birds, homestead vegetables, protect fishery by putting nets in advance
- secure cooking stove, small vessels, firewood and animal dry fodder

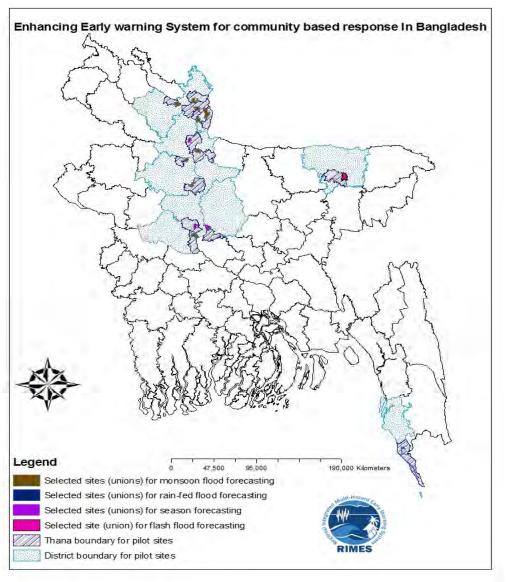


System sustainability

- Continues support to NMHSs for making the forecast operational
- Community level workshops to develop the understanding of end users
- Back up system working at RIMES until country system become self dependent

Institutional Collaboration For Sustainable End-to-End Flood Forecasts System

CASE STUDY: Bangladesh

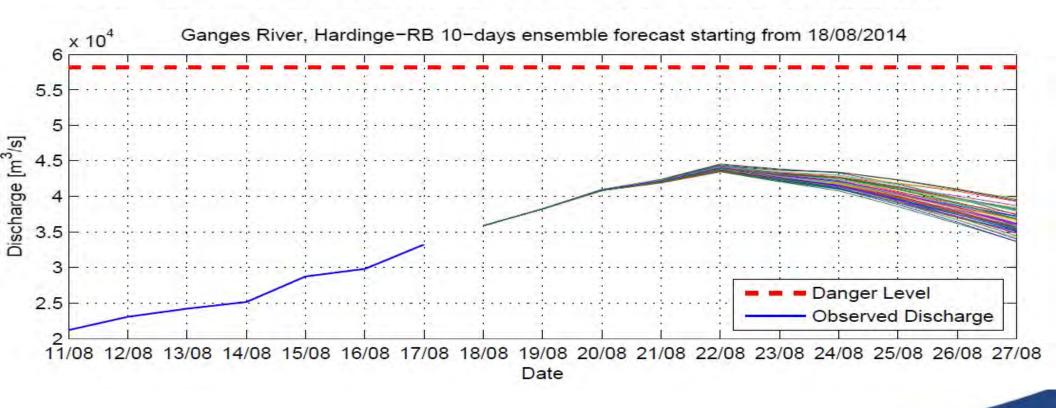


Objectives

- Expand medium range (1-10 days) flood forecast
- Piloting flash flood early warning system at Sunamgang & Cox's Bazar area;
- 3. Operationalize long range (1-3 month) forecasts.

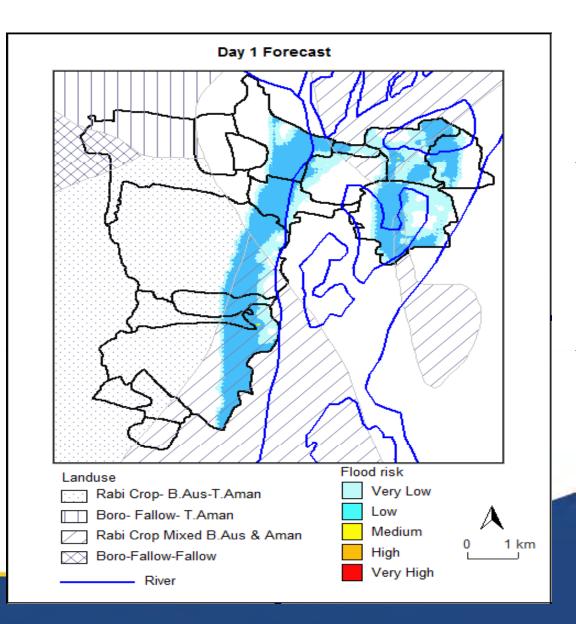
Pilot Areas

Forecasting


- 3-days deterministic forecast, now extended to 5-days
 - based on water level data as boundary condition at Pankha on Ganges River and Noonkhawa on Brahmaputra River

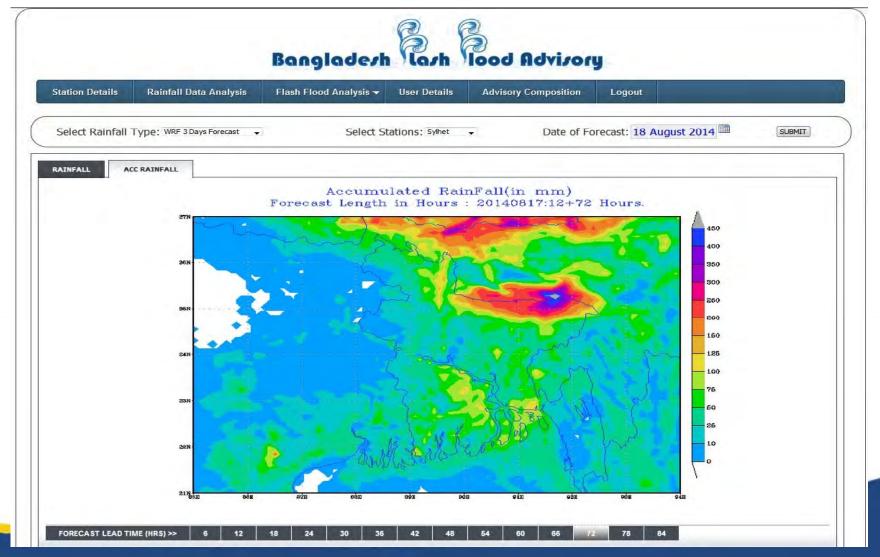
10-days probabilistic forecast with RIMES support

- based on discharge forecast boundary condition at Hardinge Bridge on Ganges River and Bahadurabad on Brahmaputra River
- uses ECMWF EPS rainfall forecast, CFAB-FFS model and MIKE11 model



10-days Forecasting

Flood Forecast



Flash Flood Warning Methodology

- Assessment of rainfall intensity-duration thresholds
- Analysis of flash flood potential using observed and forecasted rainfall and thresholds
- Development of web-based system for flash-flood advisory by integrating thresholds with rainfall forecast

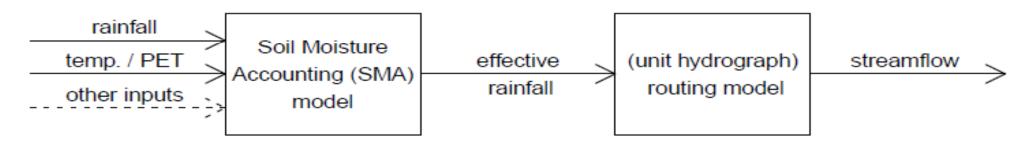
Flash Flood Analysis

Flash Flood Analysis

Duration (hrs)	18-08-2014	19-08-2014	20-08-2014	
24	28	37,91	56.78	
48	56	115.91	144,65	
72	56	143.91	172.68	
120	56	143.91	200,69	
168	56	143.91	209,69 200,69	
240	56	143,91		
Advisory	HFF	598	57.0x	
	Flash Flood A	dvisory		
Plus Plasti Place Walking	Flash Flood Warning on 19-08-	2014 to 20-08-2014		
FA: Flash Flood Alert				
IFE No Flash Flood	No Flash Flood on 18-08-2014			
ate Advisory				

Web-based Dissemination System

Station Details	Rainfall Data Analysis	Bangladesh Cash Cood Advisory Flash Flood Analysis User Details Advisory Composition - Logout	
Select Stati	ion: Sylhet 👻	Select Users: Md. Jabed Hossain - Select Date: 10 September 2014	SUBMIT
	1	Create Advisory	
	Name:	Md. Jabed Hossain	
	Ensail:	jabed@rimes.int	
	Mobile:	8801746482207	
	Station:	Sylhet	
	Weather Update:	Rainfall : mm Temperature Min : °C Temperature Max : °C Source : Bangladesh Meteorological Department	
	Advisory: Built from model Char :: 142/160	No Flash Flood on 10-09-2014 to 19-09-2014 Based on ECMWF Forecast. No Flash Flood on 10-09-2014 to 12-09-2014 Based on WRF Forecast.	



Seasonal Flow Outlook

- Extract ECMWF historical seasonal ensemble (41) forecast of rainfall and temperature for the Ganges and Brahmaputra basins
- 2) Compute ensemble mean for each grid
- 3) Compute Mean Areal Precipitation (MAP) and Mean Areal Temperature (MAT) over the catchment
- 4) Set up rainfall-runoff model with MAP and MAT as input
 -) Calibrate and validate the model

Seasonal Flow Outlook

Approach & Methodology

Rainfall-runoff modeling in R-Hydromad package

For Ganges,

SMA: Catchment Wetness Index (cwi),

Routing: Exponential Unit Hydrograph (expuh)

For Brahmaputra,

SMA: Catchment Wetness Index (cwi),

Routing: AutoRegressive Moving Average with eXogenous inputs (armax)

Seasonal Flow Outlook System

Advisory

Select Month :: January

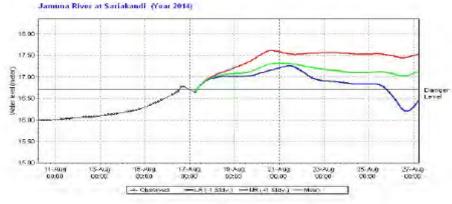
Select Year :: 2015

Submit Query

10.00

Web-based Dissemination System

		ar 1, 2015 25000 m3/s
Zoom 3m om 14 A Fron		
		25000 m3/s
		20000 m3/s
		15000 m3/s
		10000 m3/s
		5000 m3/s
		0 m3/s
Nov 2014 Dec 2014 Jan 2015	Feb 2015	Mar 2015
Nov'14 Dec'14 Jan'15	Feb '15	Marils


Monthly and Seasonal Flow Outlook [Jan 2015 - Mar 2015]

Station	Latitude	Longitude	Mean Monthly Flow (m ³ /s)						Mean Seasonal Flow (m ³ /s)	
			Jan 2015 Normal Forecast		Feb 2015 Normal Forecast		Mar 2015 Normal Forecast		Normal Forecas	
Bahadurabad	25.1655	89.7330	5,351	1,257	4,679	1,394	5,445	2,342	5,158	1,664
Hardinge Bridge	24.0658	89.0264	2,144	695	1,148	941	773	1,245	1,355	960

Integration into FFWC System

ilistic forecasts (51 ensemble series) on Hardinge Bridge point) and ECMWF rainfall

tandard Deviation from the Mean and -1

rge and the mean rainfall forecast of all

t Board (BWDB) is acting as a background rought out in FFWC model for this 10-day

with extreme care.

arning Center lopment Board com; ffwcbwdb@gmail.com

technical support from RIMES

1 Supported by USAID through CARE-Bangladesh with technical support from RIMES

21

Conclusions

- KIMES is developing capacity of member states to generate different ranges of hydrological forecasts (flash flood, 10-days, seasonal).
- Training and capacity building is core component
 - National Professional level
 - Community level
 - Secondment scientists
- Overall flood risk management has been enhanced in member states through different range of early warning

systems.

Thank You !

www.rimes.int