

Agricultural Drought; Assessment and Monitoring using Geospatial technologies

Dr. C.S. Murthy
Head, Crop Monitoring & Assessment Division
Remote Sensing Applications Area
National Remote Sensing Centre, Hyderabad
murthy cs@nrsc.gov.in

NATIONAL REMOTE SENSING CENTRE (NRSC), ISRO Key Performance Areas

- End-to-end operations of Ground Segment for IRS Satellite Constellation
- Exclusive entity for Remote
 Sensing Data Dissemination in
 India for Civilian Sector

- Providing Space-based Disaster Management Support
- Primary responsibility for National Database for Emergency Management

- Lead organization in the country for National Remote Sensing Application Missions
- Responsible for NR Mgmt
 Information Products and Value
 Added Services

- Capacity Building and outreach in Geospatial Technologies
- Hosting a UN Regional Centre for Asia-Pacific (CSSTE-AP)

- Sole civilian Aerial Remote Sensing Data and Services Provider in India
- Dedicated Aircraft System for Disaster Management Support

- → R&D : ISRO-GBP, RESPOND, TDP
- → EOAM: RISAT, MOP
- Outreach: Web Enabled Services (INFFRAS, WALIS, iBIN, VRC)
- Promotional Activities

nrsc

Drought – a silent threat to rural economy

इसरो ंडा

Agriculture – the immediate victim of drought

Geographical Area

- 328.7 M ha Net Sown Area
- 142.2 M ha
- Net Irrigated Area

55.10 M ha

- 70% of population depend on agril.
- 68% of net sown area(142.2 M ha) is drought prone
- 50% of drought prone is severe in nature

Non agricultural impact: Drinking water shortage

Fodder shortage

Understanding Drought

Meteorological drought: reduced rainfall

Hydrological drought: reduced surface water

Agricultural drought: reduced soil moisture

met. indicators

hydrological indicators

crop stress indicators

- Complex nonlinear interactions
- Slow process with multiple impact
- No single index
- Different states adopt different norms

Department of
Agriculture, Cooperation
and Farmers Welfare
(DACFW), Govt. of India is
the Nodal agency for
drought management

Guidelines to states

- National Drought Manual 2009
- National Drought
 Manual 2016
 (www.agricoop.nic.in)

Manual provides

- indices for drought monitoring
- Drought declaration protocols
- •Relief management
- •Long term measures
- Training to states

MANUAL FOR DROUGHT MANAGEMENT

DECEMBER 2016

Department of Agriculture, Cooperation & Farmers Welfare
Ministry of Agriculture & Farmers Welfare
Government of India
New Delhi

Agricultural Drought

Causative factors

- Deficit rainfall
- Deficit Soil moisture
- Rise in temperature
- Rise in water demand

Effect on agriculture

- Delayed sowings
- Reduced sown area
- Poor germination
- Stressed crops
- Loss of crop yield

Indian Meteorological Department

Met. Drought season – if rainfall is

less than 75 % of normal

State Depts. of Agriculture/Revenue/Relief

Weekly reporting of information

- Rainfall
- Crop sown areas (delay in sowings/reduction in sown area)
- Reservoir levels
- Manually observed agricultural situation at district/sub district level
- Non spatial and subjective manual observations.
- ➤ Inconsistency w.r.t to data collection and availability among the states.
- ➤ No uniform criteria for drought assessment/drought declaration

- Sparse observations
- Sharp variability in weather
- **❖** Physical nature of parameters partly related to biological nature of crops.

Meteorological indicators

Rainfall - in season

+/- 20 % dev. Normal -20 to -60 % Deficit <-60 % dev. Scanty

SPI Values	,
2.0+	extremely wet
99 to .99	near normal
-1.0 to -1.49	moderately dry
-1.5 to -1.99	severely dry
-2 and less	extremely dry

Rainfall – most common indicator

Standardized Precipitation index (SPI)

Indicators based on water balance

- Palmer drought severity index
- Moisture Adequacy Index (MAI)
- Aridity Index and its anomaly

MAI Values	
76-100	No drought
50-75	mild
25-49	moderate
< 25	severe

Aridity anomaly		
0	Non arid	
1-25	mild	
25-50	moderate	
>50	severe	

Palmer Classifications				
4.0 or more	extremely wet			
0.5 to 0.99	incipient wet spell			
0.49 to -0.49	near normal			
-0.5 to -0.99	incipient dry spell			
-1.0 to -1.99	mild drought			
-2.0 to -2.99	moderate drought			
-3.0 to -3.99	severe drought			
-4.0 or less	extreme drought			

Standardized Precipitation Index (SPI)

Hydrology indicators

Reservoir Storage Index

Water levels in reservoirs in different years
Surface water bodies mapping – water spread area
Runoff index using hydrological models

Ground water index

Observation wells – water level data

Agricultural drought indicators

- Extent of reduction in crop planted area
- Extent of delay in crop planted area
- Crop stress at different growth states
- Crop yield loss

nrsc

AGRICULTURAL DROUGHT – Satellite indices

Ground water Storage

National Agricultural Drought Assessment and Monitoring Systems (NADAMS)

Conceptualisation, development, operational services and institutionalisation of a remote sensing application project

nrsc

NADAMS)

Normal

Satellite data analysis – Resourcesat, Oceansat, NOAA, Terra, Aqua

Agricultural drought assessment

Mild Moderate Severe Information reporting lational Agricultural Drought Assessment and Monitoring System

- · Ministry of Agriculture
 - State Depts. of Agril and Relief
- Scientific Organizations

End use:

- Crop contingency plans
- Drought declaration

Satellite derived **Indicators/information**

Sub-district level

- NDVI
- NDWI/LSWI
- EVI
- SASI
- AMSR E soil moisture

Ground data

- Soil
- Rainfall
- Sown area
- Cropping pattern
- Irrigation support

Strengths of NADAMS project

- Data from multiple satellites
- Combination of indices for assessment
- Strong ground data base
- Sub-district level assessment
- Objective and user friendly information
- Positive feedback from the User departments

Commonly used satellite indices

- ✓ Spectral response in V, NIR region
- ✓ Spectral response in the SWIR region
- ✓ Thermal response
- ✓ Mainly using data from polar orbiting satellites
- ✓ Process based indices not operational
- ✓ Weak forewarning and preparedness capability

Most commonly adopted index - NDVI

- a) chlorophyll based index
- b) plant vigour and density
- c) easy to compute and interpret
- d) robust index
- e) Limitations soil back ground, saturation, time lag etc.

LSWI/NDWI

- a) Plant moisture based index
- b) NIR and SWIR based
- c) No saturation issues
- d) Immediate response
- e) Sensitive to surface wetness
- during sowing period

Combination of NDVI and LSWI

- a) Overcomes limitations of either one
- b) amplifies anomalies and
- c) more responsive to ground situation

NDVI response to Agricultural Drought

Seasonal NDVI profiles for drought assessment

- (1) relative deviation from normal,
- (2) vegetation Condition Index,
- (3) in season rate of transformation

Integration with ground data

Tie up with ground depts.

Data availability

		Spatial	Temporal	
Satellites	Sensor	resolution	resolution	Swath
Resourcesat	AWiFS	56 m	5 days	750 km
	LISS III	23 m	26 days	140 km
LANDSAT 8	OLI	30 m	16 days	185 km

Satellite/ Sensor	Indices
NOAA AVHRR (1km)	NDVI
Oceansat 2- OCM (360m)	NDVI, ARVI
Terra MODIS (500 m)	SASI, NDWI
Terra AMSRE (25 km)	Soil moisture
INSAT 3A CCD (1 km)	NDVI

Data in public domain for drought assessment

- Rainfall –
 IMD, INSAT, CPC, TRMM
- Soil Moisture AMSR2
- PET NOAA
- Temperature MODIS LST
- Vegetation Indices –
 MODIS, OCM, SPOT, AVHRR etc
- Satellite data free downloads Resourcesat, MODIS..

.

Fortnightly NDVI Composites of Resourcesat-2 AWiFS over kharif crop area

Methodology for agricultural drought assessment

Interpretation of NDVI changes to a Agricultural drought

NDVI anomaly

% dev. from normal

(actual NDVI-normal NDVI)/normal NDVI*100

Selection of normal year – average of recent past normal years

NDVI is a conservative indicator and hence anomalies are not very high

Thumb rule:

- > 20% reduction in NDVI drougt conditions
- >30% reduction indicate moderate to severe drought conditions

nrsc

Block level crop condition – Anantpur district Comparison between normal year (2005) and drought year (2002)

Crop area affected by drought in kharif 2015, West Bengal

Bankura district

West Midnapur district

No Data/Cloud

AWiFS derived crop condition anomalies showing agricultural drought situation in Andhra Pradesh, kharif 2011

MODERATE

SEVERE

562 mandals

Resourcesat AWiFS — A work-horse for monitoring Agriculture

Satellite derived Area Favourable for Crop				
Sowing/Crop Sown Area (AFCS), Lakh ha.				

Kharif			
Nromal	AFCS	AFCS	Unfavourable
Area	Jul-10	Aug-10	area
37	19	23	14

Agricultural drought assessment

Crop areas affected by agricultural drought situation are showing lower NDVI compared to normal, in kharif 2010 in Bihar state.

- 1. Pas. Champaran
- 2. Pur. Champaran
- 3. Sheohar
- 4. Sitamarhi
- 5. Madhubani
- 6. Supal
- 7. Ararai
- 8. Kishanganj
- 9. Purnia
- 10. Madhepura
- 11. Saharsa
- 12. Darbhanga
- 13. Muzaffarpur
- 14. Gopalgani
- 15. Siwan
- 16. Saran
- 17.Vaishali
- 18. Samastipur
- 19. Regusarai

31. Bhabua 32. Rhotas 33. Aurangabad

20. Khagaria

22. Bhagalpur

26. Sheikhpura

21. Katihar

23. Banka

24. Munger 25. Lackeesarai

27. Nalanda

29. Bhojpur

28. Patna

30. Buxar

- 34. Jahanabad
- **35.** Gaya
- 36. Nawada 37. Jamui

Satellite based agricultural drought assessment kharif 2010, West Bengal

Shortwave Angle Slope Index (SASI)

where a, b and c are Euclidian distances between vertices NIR and SWIR1, SWIR1 and SWIR2, and NIR and SWIR2, respectively

Features	SASI value
Dry soil	highly positive
Wet soil	low positive

Features	SASI value			
Dry vegetation	low negative			
Moist veg.	high negative			

Chronological synchronization between

- (a) Decrease in SASI
- (b) Increase in rainfall
- (c) Increase in sown area

NADAMS project

Conceptually and computationally simple procedures to discriminate the crop sowing favorable areas at state level

Seasonal dynamics of SASI

Seasonal SASI profile

Geospatial product on Area Favourable for Crop Sowing (AFCS) using multi-criteria approach

Area Favourable for Crop Sowing (AFCS) derived from SASI and water balance methodology, Kharif 2012

State	Kharif	AFCS M ha.				Unfavorable
state	normal	June	July	Aug	Sep	area
Andhra Pradesh	7.8	2.0	6.8	6.9	7.3	0.4
Bihar	3.7	0.7	3.6	3.7	3.7	0
Chhattisgarh	4.8	3.2	4.8	4.8	4.8	0
Gujarat	8.7	1.3	5.0	5.8	8.1	0.6
Haryana	2.8	0.6	1.6	2.8	2.8	0
Jharkhand	2.5	0.3	2.4	2.5	2.5	0
Karnataka	7.5	3.5	6.0	6.0	7.0	0.5
Madhya Pradesh	10.4	0.7	9.7	10.3	10.4	0
Maharashtra	14.0	5.5	13.2	13.8	13.8	0.2
Odisha	6.3	3.9	6.1	6.2	6.3	0
Rajasthan	14.3	0.2	4.4	11.7	13.6	0.8
Tamil nadu	2.4	1.1	1.8	2.0	2.0	0.4
Uttar Pradesh	9.3	2.8	8.7	9.2	9.3	0
Sub-Total	94.5	25.8	74.2	85.7	91.7	2.9
All India	108.6	34.2	87.0	97.7	105.5	3.1

Soil moisture

Soil moisture important data for hydrology, agriculture, environment, climate system etc.

Sources of soil moisture data

Non-spatial data

I. Insitu measurements

non-spatial data

Manual

- accurate
- inadequate coverage

Automatic systems

- calibration related issues
- large area coverage is expensive

Spatial data

Hydrological models

- Mass balance approach
- Profile level moisture
- Parameterisation of models challenge

Satellite based

- Large area, daily coverage
- 25-50 km resolution
- Increasing popularity

Several microwave sensors

- SMRR 1978-1987
- TRMM TMI since 1997
- Scatterometer ERS 1 & 2
- ASCAT MetopA
- AMSRE 2002-2011
- SMOS 2009
- SMAP 2015

Retrieval algorithms from passive systems

- NASA
- LPRM
- PRI

Soil moisture products from NRSC

- VIC hydrological models daily soil moisture images
- AMSR 2 LPRM soil moisture 25 km, 2 day frequency

Tracking the drought conditions of 2014 using LPRM Soil Moisture datasets of NRSC

Soil moisture deviations from normal in 2014

Field enumeration for drought impact assessment and relief management

Mobile Apps. Technology

Improved field data collection system

- Real-time field data collection, robust & versatile system, automation etc.
- Surveillance of events, automated alerts generation and dissemination
- Objective enumeration system
- Localised crop damages

that allows users to share, access and upload natural resources information on a near real time basis, with Bhuvan serving as the platform

- Crowd sourcing approach with open source tools like Open layers, PHP, Geoserver and Mapserver, etc. for visualization and uploading
- Immense use for agricultural information collection/analysis
- Provision to upload the information through internet or customized mobile which will be geo-tagged for visualization through Bhuvan Portal
- Geo-tagged in-season field data enables developing a repository of agriculture/crop related data

Field Data Collection using GeoObservation Transmission Information Decision Action

Successful and On-going applications of FDC

- Crop mapping
- Pest/disease surveillance
- Crop Insurance
- Crop damage assessment enumerations
- Disaster
- Drought impact enumeration.

Agricultural drought vulnerability

- Degree of susceptibility of an area to agricultural drought due to variable exposure and coping abilities, Vulnerability map helps visualize the hazard and act before potential damage
- Vulnerability information is crucial for long term drought management
- A quantitative and multi-dimensional approach for measuring crop-generic agricultural drought vulnerability status at sub-district level

nrsc

Agricultural Drought Vulnerability Index

Agricultural Drought Vulnerability Index – all India

इसरो ंडन

Regional analysis

Grid scale – 25*25 km

Scope for improvement with additional indicators

Training/Capacity building to other countries - Initiatives at NRSC

Trained UN ESCAP countries

Developed drought monitoring system for Srilanka and Myanmar 2015 and 2016

Trained the Officials of Srilanka in 2015

Conclusion

- Development of drought manuals
- Strengthen the drought monitoring and declaration systems
- Adopt integrated approach
- Satellite indices have the potential to capture drought conditions
- Satellite data free access, easy computations
- Immense scope for automation
- Technology support for drought resilient agriculture

Other applications in Agriculture at NRSC

- Crop insurance
- Crop intensification
- Crop mapping and modelling
- Horticulture assessment
- Plantations rubber, coffee and tea
- Crop loss assessment due to natural calamities
- Drought vulnerability and risk assessment

THANKYOU

Write to us;

- 1. murthy_cs@nrsc.gov.in
- 2. director@nrsc.gov.in