

Recent Advancement in Space Technology and Satellites for Disaster Management Application in SAARC Region

D K Singh, SAC/ISRO

Role of Space Technology

All components of space technology (Earth Observation, Satellite Communication and Satellite Navigation) play an important role in disaster management.

- Earth observation is used in all phases of disaster management: Early warning, Preparedness, Monitoring, Response, Recovery and Mitigation.
- Satellite Communications provide the critical path for relief in emergency and disaster situations, in-situ observation network, transfer of data & products in near real-time to decision makers/ managers.
- Satellite Navigation provides the crucial location information required either directly for relief operation or for proper utilization of remote sensing data in disaster management.

Operationally Demonstrated Role of Space Technology

Early Warning

Risk Information

Impact Assessment

Preparedness

Sub-systems

Emergency Communication

Early detection of events/ related parameters; and dissemination

Info. on terrain, hydrologic, climatic socio-economic and ecological aspects of community vulnerability

Pre and Post event change detection, identification of damages..

Creation of vulnerability info. for developmental planning, reconstruction

Broadcasting, VSAT, WLL-VSAT, Sat-phone, DCP

Components of Space Applications

Saving Human Life from 'Space'

Earth Observation : Eye in Space

- The Early warning and post disaster damage assessment is key to minimize the impact of disaster.
- The Space based observations have been playing key role in this domain
- The space borne instruments operating from microwave to optical wavelengths proved these observations.
- The GEO and LEO satellites carry these instruments.
- GEO provide coarse resolution observation on 24x7 basis
- LEO can provide fine resolution observation when ever it passes over region of interest.

Thirteen Earth Observation Satellites in Orbit

Synoptic Coverage

Frequent Revisit

Stereo

Time & Weather Independent

Satellites Communication: Vital Link

- The natural disasters occur suddenly and with minimal or no warnings.
- The success of effective relief operations and the delivery of appropriate aid depend on accurate and timely assessment of the situation on the ground.
- The value of such assessment always depends upon reliable information, which can be speedily communicated from the affected area to the nodal agency.
- Satellites offer a reliable way of ensuring that autonomous communications are established from the outset anywhere in the world irrespective of conditions on the ground
- Satellites are the only wireless communications infrastructure that is not susceptible to damage from disasters

Fifteen Communication Satellites in Orbit

Satellites for Mobile Satellite Communication Services

MSS Satellite: (Multibeam)

Future MSS Satellite

- 12m Unfurlable Antenna, High EIRP, G/T
- 40 Beams over Indian Region
- Spectrum Channelization & Routing
- ON-BOARD BEAMFORMING
- Voice/Data to handheld mobile terminals

Next Gen Communication Satellite: High Throughput Satellites

- First Indian Ka-Band HTS
- > 80 Gbps Throughput over India
- 40 user Beams, 5 Hub Stations
- 0.4 deg Spot Beams (~200 km dia)
- 500 MHz Band-with per beam
- Coverage:
- √~80% Population
- ✓ All Major Cities (including proposed Indian Smart Cities)

IRNSS Constellation carth's rotation satellites's movement Satellites in inclined orbits trace a figure of '8' on the earth When any 2 inclined satellites are at equator, other 2 are at extreme positions 7 satellite constellation 7 satellite constellation 111.5° E longitude 29° GSO 111.5° E longitude 29° GSO

Utilisation of SATCOM Satellite based VPN for Disaster Management

- Satellite based Virtual Private Network (VPN) provides failsafe connectivity to DSC.
- The network connects 20 multi-hazard prone State Emergency Operation Centres with 10 Primary Nodes (data providing nodes such as NRSC, CWC, IMD, INCOIS...) and 5 observation nodes (CabSec, NEOC, PMO, ...)
- 5 Nodes added in 2013 in Uttarakhand
- The network is enabled using Extended C transponder in the GSAT-12 satellite.
- Expansion of the network to multi-hazard prone districts is planned

Emergency Communication

Distress Alert Terminal (DAT)

- Low cost UHF Satellite
- Floatable; suitable for marine environment
- Quadrifiller helix antenna quasi-directional antenna
- Type of emergency: Fire, Boat sinking, Man overboard, Medical
- Inbuilt GPS to give position and time information
- Battery operated (battery life minimum 24 Hrs.)

Type-D Satellite Phones

- Connectivity on Demand: Terminal to Terminal;
 Terminal to PSTN; PSTN to Terminal
- Technology transfer to Indian industry in year 2010
- 50 terminals (Astra make) procured are being used by CRPF & for DMS
- Hub at DES (Delhi Earth Station) operational 24x7.

DTH BASED DISASTER WARNING DESSEMINATION SYSTEM

- Uses low-cost DTH-technology in Ku-band
- Allows user to watch FTA DTH bouquet during "quiet-period".
- Interrupts current program to give warning
- Any STB or a group of STBs or all STBs can be selected for issuing warnings
- Warnings are preceded by a long hooter
- Warnings-issuing from multiple independent locations (remote heat ends) in local languages
- Doesn't need TV if aim is to receive only disaster-warnings.

SATELLITE AIDED SEARCH AND RESCUE SYSTEM SAVIOURS IN SPACE

GEOLUT

Cospas-Sarsat System Concept 1544.5 MHz LEO & GEO (INSAT-3A & 3D) SEARCH & RESCUE SATELLITES LOCAL USER TERMINAL (LEO & GEO) BLR & LCK MISSION CONTROL CENTER DISTRESS CALL UTILIZING EMERGENCY BEACON **EPIRB** ELT PLB

ORDINATION
CENTER RCCs &
MRCCs

LEO, GEO & MEO CONSTELLATIONS

Three Types of Satellites:

- Low Earth Orbiting (LEOSAR): Doppler positioning, Delayed detection due to wait time, Global
- ➢ Geosynchronous Earth Orbiting (GEOSAR): Continuous coverage (no wait time) between 70°N and 70°S, beacon position only through GNSS system
- Medium Earth Orbiting (MEOSAR): Instantaneous Beacon Position using Triangulation, Global

LEOSAR OPERATING PRINCIPLE

- System works on the principle of Doppler effect.
- The person in distress carries a device called Radio Beacon capable transmitting signal in the event of distress.
- The signal radiated is subjected to Doppler shift when received at satellite due to relative motion between the satellite and the device radiating the signal.
- with the precise measurement of Doppler shift and with the knowledge of satellite orbit, position of distress signal can be estimated.

• In the first pass, there will be two locations (real and image) due to symmetry of the satellite orbit, this ambigrapy gets resolved in 2nd pass.

MEOSAR

- The current LEOSAR and GEOSAR systems that detect and locate distress beacons have shortcomings that MEOSAR will overcome.
- The GEOSAR system constantly covers the entire Earth except the high-latitude (i.e., polar) regions.
- GEOSAR system can receive beacons distress messages across most of the globe, but it cannot locate a beacon unless the location is encoded in the beacon's message from a local navigation (GNSS) receiver.
- The LEOSAR system can locate a beacon without location information being transmitted in the beacon message but the LEOSAR satellites have a view of only a small part of the Earth at any given time.
- While LEOSAR and GEOSAR still provide valuable search-andrescue capabilities, MEOSAR is a revolution in technology, by combining best of both.

MEOSAR CONCEPT

INSAT-3A & 3D: Providing Continuity to Global Coverage (70°N and 70°S)

Radio Beacons

Radio Beacons – Types

EPIRB - Emergency Position Indicator Radio Beacon

ELT - Emergency Locator Transmitter

PLB - Personal Locator Beacon

Frequency

- 406 MHz SASAR
- 121.5/243 MHz Phased out

- Emits distress signal for more than 24 hrs using internal battery, when activated in a distress situation
- Automatic or Manual activation in the event of any distress
- 406 MHz beacons are registered to establish identity of the user
- 50 Manufacturers, 210 approved models available globally

INMCC Service Area

Cospas-Sarsat Current System Status (Global)

Green color indicates CS Member countries coverage

Participants:

- 43 member countries including 4 Parties (USA, France, Canada, Russia), 28 ground segment providers, 9 user states, and 2 Organizations

Space Segment:

- 5 LEOSAR satellites (SARSAT-7,10,11,12,13), 13 GEO satellites (3 GOES, 2 INSAT, 4 MSG, 2 Electro-L, 2 Loch) 39 MEOSAR (18 GALELIO, 20 GPS, 1 GLONASS)

Ground Segment: 53 LEOLUTs, 23 GEOLUTs, 31MCCs

Radio Beacons:

Global

- Total Number of beacons estimated: 2,000,000
- No. of Registered Beacons Globally: 1,513,000:

INDIA

- No of Registered Beacons: 15139 (ELT: 3696, EPIRB:8351, PLB: 3092)
- Registered Users: 851

Lives Saved (globally): Saving of 41,750 lives in 11788 incidents- (1982 to 2015);

Lives Saved (INMCC): Saving of 2030 in 118 incidents from 1991 till date

International Regulatory Authorities: ICAO, IMO

SAR RESPONSE TIME

Satellite Detection

LUT

MCC

RCC

GEO Immediate

Immediate

4 min.

0.3 min.

2-4 min.

(No Polar Coverage)

LEO Immediate

2 min.

1 min.

2-4 min

MEO Immediate

15 -200 min.

50ms

0.3 min

2-4 min

Immediate 50 (single burst, Global)

EVERY MINUTE COUNTS

