USE OF SPACE TECHNOLOGY IN FAIL-SAFE EMERGENCY COMMUNICATION AND ESTABLISHING LAST MILE CONNECTIVITY

24 May, 2017

Nilesh M. Desai

Deputy Director-SNAA, Outstanding Scientist Space Applications Centre (SAC), Indian Space Research Organisation (ISRO), Ahmedabad-380015. Gujarat, INDIA

Tel .: 91-79-26912444 (D) / 26912000 / 26915000 Ext. 2433 / 2434, Fax :+91-79-26915807 Email: nmdesai@sac.isro.gov.in; nmdesai44@gmail.com;nmdesai44@yahoo.com

TOPICS IN THIS PRESENTATION

- Satellite Communication (SatCom)
 - Fixed Satellite Services (FSS)
 - Disaster Management
 - Last Mile Connectivity
 - Mobile Satellite Services (MSS)
 - MSS Terminals
- SatNav & SatCom Synergy
 - GaGaN
 - Navigation with Indian Constellation (NavIC)
 - Potential Applications : Case Studies

ISRO & INDIA's SPACE VISION

"If we are to play a meaningful role nationally, and in the comity of nations, we must be second to none in the application of advanced technologies to the real problems of man and society." - Dr. Vikram Sarabhai

SPACE APPLICATIONS CENTRE-SAC

SAC ACTIVITIES

- Technology Development
- Payload Design
- Payload Realization
- Software package Development
- Application development
- Technology Transfer
- User Interface
- Capacity Building

ON-GOING/PLANNED PROJECTS

- Communication/ >15 projectsNavigation
- Remote sensing / >15 projects
 Earth observation
- Science/ 2 projectsPlanetary mission
- Technical >150 projects
 Development Projects

Bopal Campus

Familiar SatCom Applications

Internet TV & phone (IPTV & VoIP)

Broad band

Emergency Disaster Recovery

Community **Broadband**

Home Broadband

Business Broad band

Satellite News Gathering

MSS Services

Telemedicine

Rural Telephone & Internet

24th May, 2017

Satellite Communication Services

-
ည
4
بج
ā
\simeq
Ξ
ത
ℼ
\sim
щ
_
$\boldsymbol{\omega}$
Ö
· <u>=</u>
Q

Fixed Satellite Service

Application

: Video-

conference

Frequency: 6/4 GHz

Data Rate : 384 kbps

User Terminal : 2.4 m

Satellites : INSAT-3A,

GSAT-12,

GSAT-10

Mobile Satellite Service

Application : Voice, fax

Frequency

User Link: S-band

Hub Link: C-band

Data Rate : 6.4 kbps

User Terminal : MSS-Type-D

Satellites : GSAT-2,

GSAT-7

Broadcast Satellite Service

Application : DTH

Frequency: 14/12 GHz

Data Rate : 40 Mbps per Tx

User Terminal: 0.6 m

Satellites : INSAT-4A,

INSAT-4B,

GSAT-8

Service Architecture

SatCom - Current Applications 🕰 📠

BROADCAST

- > Television Broadcasting
- Direct To Home (DTH)
- > TV & Radio Networking

OTHERS

- **Mobile Satellite Service**
- Search and Rescue
- **Data Collection Platform**
- Disaster Warning

- > Speech Circuits **On Trunk Routes**
- VSAT Connectivity

DEVELOPMENTAL

- > Tele-medicine
- > Tele-education
- **Emergency Communication**

Indian SatCom Scenario

Technology Growth

- ❖ UHF, S, C, KU-Bands
- ❖ I-1K, I-2K, I-3K spacecraft
- ❖ 1 TO 3.5 TON Lift-off
- ❖ 1.5KW TO 7 KW Power
- ❖ Standard Bent Pipe Txpdr
- Regenerative Experimental

- **❖** Ku and Ka HTS
- ❖ I-4K Spacecraft 4.5T LOM
- ❖ I-6K Spacecraft 6T LOM
- ❖ 1.5KW TO 15 KW Power
- ❖ Multi Beam-high Pointing
- Navigation
- ❖ Broad Band/Multimedia
- Inter Satellite Links

Future

- To contend with the absence of Protective Regulatory regime.
- Compete with terrestrial systems.
- Time to consider satellite along with complimentary terrestrial systems.
- **❖** More complex Payloads
- ❖ V-band / Optical Bands
- ❖ MEO circular Com Sats

SASpace and Disaster Management Convergent solution * COMMUNICATIONS * MET IMAGING * REMOTE SENSING DATA

PRE-DISASTER

Elements of Disaster Management Support (DMS) System

Assets and Infrastructure

Technology Development & Research, Forecasting/ Simulation Models, ...

Emergency Communication Network - VPN; Support - MSS Terminal, WLL VSAT, ...

Satellite Communication Technology & Disaster Management

- ❖Pre-Disaster : Prevention by Surveillance and Early Warning
 - ❖ SATCOM is Most Effective & Robust
 - ✓ Nation wide coverage without gaps in communication
 - ✓ Relatively immune from disasters
- **❖ During Disaster** : Preparedness & Speedy Response
 - ❖ Handheld & Portable terminals for first responders MSS Network
 - Communication network with minimum time for first response
- **❖Post Disaster** : Recovery & Rehabilitation
 - ❖ Communication support for trapped population & administrators
 - ❖ Provision for Integrated communication network e.g., Satellite with terrestrial systems like GSM/CDMA/Wi-Fi etc.

SATELLITE COMMUNICATION NETWORK IS MUST FOR EFFECTIVE DMS

SatCom Applications & Technologies

VSAT based DMS Network (Operational)

Handheld Reporting Terminal for SMS & Vehicle tracking using INSAT Satellite

Distress Alert Transmitter Provide safety to fisherman

Cyclone warning system provide alert message to selective /community using DTH TV

AWS

Tsunami Early Warning
System provides Tsunami data
through satellite

NDIA's Current DMS Communication Network

Satellite
Orbital Position
Transponder
Bandwidth
Uplink frequency
Downlink Frequency

: GSAT-12

: 83 Degree East

: Ext-C Band,

Transponde#9

: 36 MHz

: 6835±18 MHz

: 4610 ±18 MHz

Access technology

: DVB-S / MF-TDMA

Hub Location:

Ministry of Home Affairs (MHA), Samanvaya Sadan, Siri Fort Road, New Delhi-110 049

Primary Nodes Location:

- 1) NRSC, Balanagar, Hyderabad
- 2) NRSC, Shadnagar, Hyderabad
- 3) Central Water Commission, New Delhi
- 4) Geological Survey of India, New Delhi
- 5) IMD, Mausam Bhawan, New Delhi
- 6) INCOIS, Hyderabad (Andhra Pradesh)
- 7) Space Applications Centre, Ahmedabad
- 8) Master Control Facility (MCF), Hassan
- 9) North-East Space Applications Centre, Shilong

User Nodes: 26 State Emergency Operations Centers (SEOCs) are connected using this network to provide communication support during disaster.

Proposed Upgradation : National Satcom Network for DMS

DMS Communication Network: Hub Configuration

9.3 m system with complete 1:1 redundancy (North and South regions) Connected to cloud via OFC **FTP www Internet Gateway** Internet **SkyIP Email VoIP WiFi AP** HUB processor **GSM Gateway** ((0)) External **PSTN Gateway** mobile/lane network SIP **NMS** proxy/server

Capital Gateway With Last-mile Connectivity-wide area coverage

DMS Communication Network: Portable reminial

- 1.8 M VSAT, compact and easily transportable
- Low power consumption with sufficient power backup
- Simple & speedy installation
- Provision for last mile connectivity (WiFi, Wimax, GSM, CDMA, FM)

South East Asia Satellite (GSAT-9)

- □ 12- Ku-band transponders
- ☐ Total satellite Bandwidth ~ 432 MHz

MSS Ground Terminals: Salient Features

Reporting Terminal (RT)

- •Data, Position, Small msg. reporting appl.
- RS232/USB/ Bluetooth user data interface
- •Weight less than 170gm/450gm

Satellite Mobile Radio (SMR) /

- •Two way voice and small text message communication
- Supports call from terminal to terminal, terminal to PSTN or any other network
- •RS232/USB data interface
- •Weight ~ 1kg / 500gm

Portable Multimedia Terminal (PMT)

- •Two way multimedia (video, voice) and IP data communication
- Supports Video
 Conferencing, IP data
 transfer @ 144 kbps
- •Ethernet interface for user data
- •Weight ~ 3.0 kg

Broadcast Receiver (BR)

- Receive Only Terminal for Multichannel Audio, Video & Data
- Terminal with interface to tablet/ smart phones & with built-in display
- •Ethernet/USB output data interface
- •Weight ~ 200gm

SRO's MSS Network & Technology for First Responder

communication between terminal and any other telecom network

 Video Conferencing using Portable Multimedia Terminal Surveillance

ISRO's MSS Network & Technology for First Responders

Broadcast Receiver: Multichannel Audio- video and data reception terminal

Reporting Terminal: Transmitter for position and small message reporting.

Features:

Reporting Terminal with built-in GPS to support Personnel/Vehicle/Asset tracking and small message reporting from disaster site
24th May, 2017

SATSunami Early Warning Communication System is no second secon

Cyclone Warning System

SAC

1000 | (se Amruss - (N.1954) American With 1955 - Team C.

Outernet Application using MSS broadcast

- To Provide free e-content to remote location users through broadcast channel
- Based on request made via offline/terrestrial/satellite means, when either there is no internet service available or limited connectivity
- Demo carried out using Gsat MSS

Outernet Application using Ku-band broadcast

- To Provide free e-content to remote location users through broadcast channel
- Based on request made via offline/terrestrial/satellite means, when either there is no internet service available or limited connectivity
- Demo carried out using Ext. C-Band FSS (Gsat-12)

सर्ग डिंग्व

ISRO's Future Satcom payloads

GSAT-11

- Ka-band Hub link, Ku-band User links
- Ka x Ka link (125 MHz BW) across two hub beams
- Total Throughput : ~10 Gbps (for FSS & Broadband)

Broadband Services

GSAT-20

- GEO Platform for Handheld Mobile Applications
- C x S Forward Link; S x C Return Link
- Spot Beam & wide beam coverage
- 12m unfurlable antenna with DBFN

Services to Mobile users

I-6K Payload

- 88# Ka-band beams
- Very high capacity : $> \sim 200$ Gbps
- High data rate broadband applications
- 0.4 to 0.8 m terminals

Broadband Services to Home users

GSAT-17

- Capacity Augmentation
- Transponders in C & Ext. C-band
- C x S & S x C transponders for MSS.
- DRT & SAS&R Transponder for Disaster management

VSAT & DTH Services

GSAT-18

- Capacity Augmentation
- Transponder in C, Ext. C & Ku-band
- Total: 48 Transponders

Gsat-19: High Throughput Satellite Precursor

System Configuration

- Beam Configuration
 - 8 Spot-beams (Ku-band)
 - 2 Gateway beams (Ka band)
- Ku-Planned band(partial GSAT-11 band) for user beams
- ☐ Hub link frequencies : 29.5 29.75 GHz/18.1 18.35 GHz (in both pol.)
- Hub beams proposed at Ahmedabad & Bangalore

GSAT-19: Ground Network

Gsat-11: High Throughput Satellite

- High throughput advance communication satellite
- Covers Indian mainland and Islands with multiple spot beams
- High EIRP, G/T with frequency re-use
- User links in Ku-band and Gateway links in Ka-band

32 (16x2) Ku-band user beams

Gsat-11: HTS Ground Segment

Potential Applications

General Applications	The services for Home users Internet / Broadband connectivity
Societal Applications	The societal service for rural & remote area users, Government agencies, Universities • Distance Learning • Tele-medicine • Disaster Recovery and Emergency Management • Mobile command posts • Satellite News Gathering
Commercial Applications	The commercial service for professional and industrial uses • Bank ATM, Reservation System • Enterprise & Private Networks • Cellular Backhaul • Movie Distribution
Strategic user specific Applications	These applications are for strategic users • Military Tactical Networks

Proposed Network Configuration

Network Configuration for Inter Beam and Hub to Beam Configuration (STAR NETWORK TOPOLOGY)

SatCom & SatNav: Synergetic Application & Technology Initiatives

Satellite Based Navigation & Indian Scenario

- Receiving & Processing Signals from min. 4 Satellites
 - Calculate P,V,T / P,N,T
- Indian Scenario
 - 2015-GAGAN (GPS Aided Geo Augmented Navigation)
 - 2016-NavIC (Navigation with Indian Constellation)

GAGAN (GPS Aided Geo Augmented Navigation)

- Jointly implemented by ISRO & AAI
- Wide Area Augm. for Civil Aviation (Gsat-8 / 10 / 15)
- GAGAN is the first SBAS system in the world to have the capability of vertical guidance in the Equatorial Anomaly Regions, i.e. India

Navigation with Indian Constellation (NavIC)

- NavIC/IRNSS consists of 7 Satellites
 - 4 Geo Synchronous Orbit (GSO) satellites at 55° E and 111.75° E at an inclination of 27°
 - 3 Geo Stationary Satellites (GEO) at 32.5° E, 83° E and 129.5° E at an inclination of 5°
- Transmits signals in L5 band (1176 MHz) and S band (2492 M件的) May, 2017

Disaster Management & Support

- **❖** Disaster assessment, management and prevention
- **❖** Monitor possible danger situations that may cause disaster (e.g. monitor flood levels, tsunami prediction, earthquake) ■
- **Rapid emergency communication**
- * Rapid command schedule

24th May, 2017

E-CALL(Emergency Calling)

- ***** Vehicle automatically dials E-CALL (emergency number) in case of accident
- **❖** Sends NavIC /GPS co-ordinates to emergency service
- **❖** Sends vehicle data (point of impact data)
- **Communication through GSM/GPRS Modem or Satellite Terminal**
- ***** Improves response time

24th May, 2017

Messaging using NavIC: Disaster Warning, Alerts

Single Channel Messaging Receiver
: Display on Smart Device

Strategic Messaging using NavIC: Geo-Fencing

7-Channel Position & Messaging Receiver

Messaging service overall flow – with 1 A

Navigation software allots msg $\ensuremath{\mathsf{ID}}$, packs msg and transmit to MCF.

IRNSS Nav data & text msg generation at INC

User decodes messages through msg ID

IRNSS Nav user; capable to receiver normal text msg

Message transmission to the satellite from MCF

24th May, 2017

Typical Demo of NavIC & MSS based Vehicle Tracking: 19 Sept.-2016

Live Demo: Vehicle Tracking at New Delhi & Ahmedabad

SAC's Demo Van in Ahmedabad

Gypsy Vehicle in New Delhi

Strategic Application: Satellite Based Vehicle Tracking

- Satellite Based Vehicle Tracking
- Battery operated device, can support up-to few hours based on reporting rate
- NavIC & GPRS based tracking also supported

MSS Network For Indian Railways इसरो डिंग्व **GSAT MSS** NavIC/GAGAN Constellation Railway MSS Terminal for loco **GPRS** Terrestrial **GPRS** Network MSS Terminal 24th May, 2017

Satcom & Satnav Applications for Remote Locations

Tracking of Soldiers in Remote Areas, Siachen Etc.

- Avalanches and Snow Storms
- Search and Rescue Operations
- Need of Innovative Antenna
- Low Power, Miniaturized Battery operated
- NavIC Rx + MSS Terminal rolled into One unit

DMSAR

C-Band DMSAR (Ver-1)
FIRST FLOWN ON NOV 26, 2005

C-Band DMSAR (Ver-2), 2011

Extent of Flood over Dharbhanga, Bihar in 2007 (Blue: Flood) As viewed by DM-SAR

_	
Operating frequency	5350 MHz
Polarization	HH, VV
Slant range resolution	<2 m (Exp), 3 m, 5 m, 10m
Azimuth resolution	<2 m (Exp), 3 m, 5 m, 10m
Swath coverage	6 Km (Exp), 25 km, 45 km, 60 km

DMSAR WIDE SWATH IMAGES

1m DMSAR IMAGE OF KOSI RIVER BREACH

Bihar Flood

5m Image

DMSAR HIGH RESOLUTION IMAGES

NANO FACTORY, SANAND

SCIENCE CITY, AHMEDABAD

ISRO Disaster Management SATCOM Support in Jammu & Kashmir इसरो इंग्ल

SATCOM to help in governance at Rajbhawan

o24thMayer2017

SAC/ISRO: Capacity Building & Public Outreach

Centre for Space Science & Technology ducation in Asia and the Pacific (CSSTEAP) (Established in Nov 1, 1995, currently 15 Member Countries)

Provides Training and education in:

- Satellite Meteorology & Global Climate
- Satellite Communications (SATCOM)
- Satellite Navigation (SATNAV)

Public outreach: VSSE Exhibitions, Publications

24th May, 2017

CONCLUDING REMARKS

- SAC/ ISRO's SatCom and SatNav Programmes
 - Vigilant Eyes in the Sky
 - Serving Nation's interests: Civilian, Disaster Management,

Science, Strategic

ACKNOWLEDGEMENTS

SAC & ISRO Colleagues

- SAARC Disaster Management Centre (SDMC)
- Gujarat Institute of Disaster Management (GIDM)
- Programme Participants
- Shri Tapan Misra, Director, SAC, Ahm.
- Shri A.S.Kirankumar, Chairman, ISRO, Blr.

Mahatma^{24th} May, 2017

If you want Right answers, Never ask Wrong Questions!

- Old Maxim

It is better to debate a question without settling it than to settle it without debating it.

- Joseph Joubert, French Moralist